Принцип работы гту. Принцип работы газовых турбин Как соотносятся мощность силовых агрегатов электростанций и температура окружающей среды

Турбиной называется двигатель, в лопаточном аппарате которого потенциальная энергия сжимаемой жидкости превращается в кинетическую энергию, а последняя в рабочих колесах – в механическую работу, передаваемую непрерывно вращающемуся валу.

Паровые турбины по своей конструкции представляют тепловой двигатель, который постоянно находится в работе. В период эксплуатации перегретый или насыщенный пар воды, который поступает в проточную часть, и благодаря своему расширению принуждает вращаться ротор. Вращение происходит в результате воздействия на лопаточный аппарат потока пара.

Турбина паровая входит в состав паротурбинной конструкции, которая предназначена для вырабатывания энергии. Также существуют установки, способные кроме электроэнергии вырабатывать тепловую энергию – пар, прошедший через лопатки пар, поступает на нагреватели сетевой воды. Подобный вид турбин именуется промышленно-теплофикационным или теплофикационным типом турбин. В первом случае, в турбине отбор пара предусмотрен для промышленных целей. В комплекте с генератором паровая турбина представляет турбоагрегат.

Типы паровых турбин

Турбины делятся, в зависимости от того, в каком направлении движется пар, на радиальные и аксиальные турбины. Паровой поток в радиальных турбинах направлен перпендикулярно оси. Паровые турбины могут быть одно-, двух- и трехкорпусные. Паровая турбина снабжена разнообразными техническими устройствами, которые предупреждают попадание внутрь корпуса окружающего воздуха. Это разнообразные уплотнители, на которые подается водяной пар в небольшом количестве.

На переднем участке вала размещается регулятор безопасности, предназначенный для отключения паровой подачи при увеличении частоты вращения турбины.

Характеристика основных параметров номинальных значений

· Номинальная мощность турбины - наибольшая мощность, которую турбина должна длительно развивать на зажимах электрогенератора, при нормальных величинах основных параметров или при изменении их в пределах, оговоренных отраслевыми и государственными стандартами. Турбина с регулируемым отбором пара может развивать мощность выше номинальной, если это соответствует условиям прочности её деталей.

· Экономическая мощность турбины - мощность, при которой турбина работает с наибольшей экономичностью. В зависимости от параметров свежего пара и назначения турбины номинальная мощность может быть равна экономической или более её на 10-25 %.

· Номинальная температура регенеративного подогрева питательной воды - температура питательной воды за последним по ходу воды подогревателем.

· Номинальная температура охлаждающей воды - температура охлаждающей воды при входе в конденсатор.

Газовая турбина (фр. turbine от лат. turbo вихрь, вращение ) - это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Состоит из ротора (рабочие лопатки, закреплённые на дисках) и статора (направляющие лопатки, закреплённые в корпусе).

Газ, имеющий высокую температуру и давление, поступает через сопловой аппарат турбины в область низкого давления за сопловой частью, попутно расширяется и ускоряется. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Полезные свойства газовой турбины: газовая турбина, например, приводит во вращение находящийся с ней на одном валу генератор, что и является полезной работой газовой турбины.

Газовые турбины используются в составе газотурбинных двигателей (применяются для транспорта) и газотурбинных установок (применяются на ТЭЦ в составе стационарных ГТУ, ПГУ). Газовые турбины описываются термодинамическим циклом Брайтона, в котором сначала происходит адиабатическое сжатие воздуха, затем сжигание при постоянном давлении, а после этого осуществляется адиабатическое расширение обратно до стартового давления.

Типы газовых турбин

- Авиационные и реактивные двигатели

- Вспомогательная силовая установка

- Промышленные газовые турбины для производства электричества

- Турбовальные двигатели

- Радиальные газовые турбины

- Микротурбины

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал / компрессор / турбина / альтернативный ротор в сборе (см. изображение выше), не учитывая топливную систему.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина - с частотой около 100000 об/мин.

Газовая турбина, как тепловой двигатель, объединяет харак­терные особенности паровой турбины и двигателя внутреннего сго­рания, в котором энергия топлива при его горении превращается непосредственно в механическую работу. Рабочим телом газовых турбин, работающих по открытому циклу, являются продукты сгорания топлива, а рабочим телом газовых турбин, работающих по закрытому циклу,- чистый воздух или газ, непрерывно цирку­лирующий в системе. На судах применяют газотурбинные уста­новки (ГТУ), работающие по открытому циклу, со сгоранием топ­лива при постоянном давлении (р = const) и ГТУ, работающие по закрытому циклу.

В настоящее время судовые ГТУ выполняют двух типов: 1) турбокомпрессорные и 2) со свободно-поршневыми генераторами газа (СПГГ).

Схема простейшей турбокомирессорной газотурбинной уста­новки, работающей при постоянном давлении сгорания топлива представлена на рис. 101. Компрессор 9 засасывает чистый атмо­сферный воздух, сжимает его до высокого давления и подает по воздухопроводу 3 в камеру сгорания 2, куда одновременно через форсунку 1 поступает топливо. Топливо, смешиваясь с воздухом, образует рабочую смесь, которая сгорает при р = const. Образо­вавшиеся продукты сгорания охлаждаются воздухом и направля­ются в проточную часть турбины. В неподвижных лопатках 4 про­дукты сгорания расширяются и с большой скоростью поступают на рабочие лопатки 5, где происходит преобразование кинетиче­ской энергии газового потока в механическую работу вращения вала. По патрубку 6 отработавшие газы уходят из турбины. Газо­вая турбина приводит во вращение компрессор 9 и через редук­тор 7 гребной винт 8. Для запуска установки используется пуско­вой двигатель 10, который раскручивает компрессор до минималь­ной частоты вращения.

На этом же рисунке изображен теоретический цикл рассмот­ренной ГТУ в координатах р - ? и S - Т: AВ - процесс сжатия воздуха в компрессоре; ВС-сгорание топлива при постоянном давлении в камере сгорания; СД- расширение газа в турбине, ДА - отвод тепла от отработавших газов.

Для повышения экономичности работы ГТУ применяют реге­неративный подогрев воздуха, поступающего в камеру сгорания, либо ступенчатое сгорание топлива в нескольких последователь­ных камерах сгорания, которые обслуживают отдельные турбины. Из-за конструктивной сложности ступенчатое сгорание применяют редко. С целью повышения эффективного к. п. д. установки наряду с регенерацией используют двухступенчатое сжатие воздуха, при этом между компрессорами включают промежуточный охладитель воздуха, что сокращает потребную мощность компрессора высо­кого давления.

На рис. 102 дана схема простейшей газотурбинной установки со сгоранием топлива при р = const и регенерацией тепла. Воздух, сжатый в компрессоре 1 , проходит через регенератор 2 в камеру сгорания 3 , где подогревается за счет тепла отработавших газов, покидающих турбину 4 со сравнительно высокой температурой. Действительный цикл этой установки показан на диаграмме S-Т (рис. 103): процесс сжатия воздуха в компрессоре 1 - 2 ; нагрев воздуха в регенераторе, сопровождаемый падением давления от р 2 до р 4 2 - 3; подвод тепла в процессе сгорания топлива 3 - 4; действительный процесс расширения газа в турбинах 4-5 ; охлаж­дение газов в регенераторе, со­провождаемое потерей давле­ния р 5 1 5-6; выпуск га­зов- отвод тепла 6-1 . Коли­чество тепла, полученное воз­духом в регенераторе, изобра­жается площадью 2"-2-3-3", а количество тепла, отданного отходящими газами в регенераторе, площадью 6"-6-5-5". Эти площади равны между собой.

В ГТУ закрытого цикла отработавшее рабочее тело не посту­пает в атмосферу, а после предварительного охлаждения вновь направляется в компрессор. Следовательно, в цикле циркулирует рабочее тело, не загрязненное продуктами сгорания. Это улуч­шает условия работы проточных частей турбин в результате чего повышается надежность работы установки и увеличивается ее мо­торесурс. Продукты сгорания не смешиваются с рабочим телом и поэтому для сжигания пригодно топливо любого вида.

На рис. 104 показана принципиальная схема всережимной су­довой ГТУ закрытого цикла. Воздух после предварительного ох­лаждения в воздухоохладителе 4 поступает в компрессор 5 , кото­рый приводится во вращение турбиной высокого давления 7 . Из компрессора воздух направляется в регенератор 3 , а затем в воздухонагреватель 6, выполняющий ту же роль, что и камера сго­рания в установках открытого типа. Из воздухонагревателя рабо­чий воздух при температуре 700° С поступает в турбину высокого давления 7 , которая вращает компрессор, а затем в турбину низ­кого давления 2 , которая через редуктор 1 приводит в действие винт регулируемого шага. Пусковой электродвигатель 8 предназ­начен для запуска установки в работу. К недостаткам ГТУ закры­того цикла следует отнести громоздкость теплообменников.

Особый интерес представляют ГТУ закрытого цикла с ядерным реактором. В этих установках в качестве рабочего тела газовых турбин (теплоносителя) применяют гелий, азот, углекислый газ. Эти газы не активируются в ядерном реакторе. Нагретый в реакторе до высокой температуры газ непосредственно направляется на работу в газовую турбину.

Основными достоинствами газовых турбин по сравнению с па­ровыми являются: малые вес и габариты, так как отсутствуют ко­тельная и конденсационная установка со вспомогательными меха­низмами и устройствами; быстрый пуск в ход и развитие полной мощности в течение 10-15 мин\ весьма малый расход охлаждаю­щей воды; простота обслуживания.

Основные преимущества газовых турбин по сравнению с дви­гателями внутреннего сгорания являются: отсутствие кривошипно-шатунного механизма и связанных с ним инерционных сил; малые вес и габариты при больших мощностях (ГТУ по весу легче в 2- 2,5 раза и по длине короче в 1,5-2 раза, чем дизели); возмож­ность работы на низкосортном топливе; меньшие эксплуатацион­ные расходы. Недостатки газовых турбин следующие: небольшой срок службы при высоких температурах газа (так, при темпера­туре газа 1173° К срок службы 500-1000 ч); меньшая, чем у ди­зелей, экономичность; значительная шумность при работе.

В настоящее время газовые турбины применяют в качестве главных двигателей морских транспортных судов. В отдельных случаях газовые турбины малой мощности применяют в качестве привода насосов, аварийных электрогенераторов, вспомогатель­ных наддувочных компрессоров и др. Особый интерес представ­ляют газовые турбины как главные двигатели для судов с подвод­ными крыльями и судов на воздушной подушке.

В статье рассказывается о том, как вычисляется КПД простейшей ГТУ, даны таблицы разных ГТУ и ПГУ для сравнения их КПД и других характеристик.

В области промышленного использования газотурбинных и парогазовых технологий Россия значительно отстала от пере­довых стран мира.

Мировые лидеры в производстве газовых и парогазовых энергоустановок большой мощности: GE, Siemens Wistinghouse, ABB - достигли значений единичной мощности газотурбинных установок 280-320 МВт и КПД свыше 40 %, с утилизационной паросиловой надстройкой в парогазовом цикле (называемом также бинарным) - мощности 430-480 МВт при КПД до 60 %. Если есть вопросы по надежности ПГУ - то читайте статью.

Эти впечатляющие цифры служат в качестве ори­ентиров при определении путей развития энергомашиностро­ения России.

Как определяется КПД ГТУ

Приведем пару простых формул, чтобы показать, что такое КПД газотурбинной установки:

Внутренняя мощность турбины:

  • Nт = Gух * Lт, где Lт – работа турбины, Gух – расход уходящих газов;

Внутренняя мощность ГТУ:

  • Ni гту = Nт – Nк, где Nк – внутренняя мощность воздушного компрессора;

Эффективная мощность ГТУ:

  • Nэф = Ni гту * КПД мех, КПД мех – КПД связанный с механическими потерями в подшипниках, можно принимать 0,99

Электрическая мощность:

  • Nэл = Ne * КПД эг, где КПД эг – КПД связанный с потерями в электрическом генераторе, можно принять 0,985

Располагаемая теплота топлива:

  • Q расп = Gтоп * Qрн, где Gтоп – расход топлива, Qрн – низшая рабочая теплота сгорания топлива

Абсолютный электрический КПД газотурбинной установки:

  • КПДэ = Nэл/Q расп

КПД ПГУ выше, чем КПД ГТУ так как в Парогазовой установке используется тепло уходящих газов ГТУ. За газовой турбиной устанавливается котел-утилизатор в котором тепло от уходящих газов ГТУ передается рабочему телу (питательной воде) , сгенерированный пар отправляется в паровую турбину для генерации электроэнергии и тепла.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

КПД ПГУ обычно представляют соотношением:

  • КПД пгу = КПД гту*B+(1-КПД гту*B)*КПД псу

B – степень бинарности цикла

КПД псу – КПД паросиловой установки

  • B = Qкс/(Qкс+Qку)

Qкс – теплота топлива, сжигаемого в камере сгорания газовой турбины

Qку – теплота дополнительного топлива сжигаемого в котле-утилизаторе

При этом отмечают, что если Qку = 0, то B = 1, т. е. установка является полностью бинар­ной.

Влияние степени бинарности на КПД ПГУ

B КПД гту КПД псу КПД пгу
1 0,32 0,3 0,524
1 0,36 0,32 0,565
1 0,36 0,36 0,590
1 0,38 0,38 0,612
0,3 0,32 0,41 0,47
0,4 0,32 0,41 0,486
0,3 0,36 0,41 0,474
0,4 0,36 0,41 0,495
0,3 0,36 0,45 0,51
0,4 0,36 0,45 0,529

Давайте приведем последовательно таблицы с характеристиками эффективности ГТУ и вслед за ними показатели ПГУ с этими газовыми машинами, и сравним КПД отдельной ГТУ и КПД ПГУ.

Характеристики современных мощных ГТУ

Газовые турбины фирмы ABB

Характеристика Модель ГТУ
GT26ГТУ с промперегревом GT24ГТУ с промперегревом
Мощность ISO МВт 265 183
КПД % 38,5 38,3
30 30
562 391
1260 1260
610 610
50 50

Парогазовые установки с газовыми турбинами ABB

Газовые турбины фирмы GE

Характеристика Модель ГТУ
MS7001FA MS9001FA MS7001G MS9001G
Мощность ISO МВт 159 226,5 240 282
КПД % 35,9 35,7 39,5 39,5
Степень повышения давления компрессора 14,7 14,7 23,2 23,2
Расход рабочего тела на выхлопе ГТУ кг/с 418 602 558 685
Начальная температура, перед рабочими лопатками 1 ст. С 1288 1288 1427 1427
Температура рабочего тела на выхлопе С 589 589 572 583
Частота вращения генератора 1/с 60 50 60 50

Читайте также: Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок.

Парогазовые установки с газовыми турбинами GE

Характеристика Модель ГТУ
MS7001FA MS9001FA MS7001G MS9001G
Состав газотурбинной части ПГУ 1хMS7001FA 1хMS9001FA 1хMS9001G 1хMS9001H
Модель ПГУ S107FA S109FA S109G S109H
Мощность ПГУ МВт 259.7 376.2 420.0 480.0
КПД ПГУ % 55.9 56.3 58.0 60.0

Газовые турбины фирмы Siemens

Характеристика Модель ГТУ
V64.3A V84.3A V94.3A
Мощность ISO МВт 70 170 240
КПД % 36,8 38 38
Степень повышения давления компрессора 16,6 16,6 16,6
Расход рабочего тела на выхлопе ГТУ кг/с 194 454 640
Начальная температура, перед рабочими лопатками 1 ст. С 1325 1325 1325
Температура рабочего тела на выхлопе С 565 562 562
Частота вращения генератора 1/с 50/60 60 50

Парогазовые установки с газовыми турбинами Siemens

Газовые турбины Westinghouse-Mitsubishi-Fiat

Характеристика Модель ГТУ
501F 501G 701F 701G1 701G2
Мощность ISO МВт 167 235,2 251,1 271 308
КПД % 36,1 39 37 38,7 39
Степень повышения давления компрессора 14 19,2 16,2 19 21
Расход рабочего тела на выхлопе ГТУ кг/с 449,4 553,4 658,9 645 741
Начальная температура, перед рабочими лопатками 1 ст. С 1260 1427 1260 1427 1427
Температура рабочего тела на выхлопе С 596 590 569 588 574
Частота вращения генератора 1/с 60 60 50 50 50

Паровая турбина. Попытки сконструировать паровую турбину, способную конкурировать с паровой машиной, до середины XIX в. были безуспешными, так как в механическую энергию вращения турбины удавалось преобразовать лишь незначительную долю кинетической энергии струи пара. Дело в том, что изобретатели

не учитывали зависимость КПД турбины от соотношения скорости пара и линейной скорости лопаток турбины.

Выясним, при каком соотношении скорости струи газа и линейной скорости лопатки турбины произойдет наиболее полная передача кинетической энергии струи газа лопатке турбины (рис. 36). При полной передаче кинетической энергии пара лопатке турбины скорость струи относительно Земли должна быть равна нулю, т.е.

В системе отсчета, движущейся со скоростью скорость струи равна: .

Так как в этой системе отсчета лопатка в момент взаимодействия со струей неподвижна, то скорость струи после упругого отражения остается неизменной по модулю, но меняет направление на противоположное:

Переходя вновь в систему отсчета, связанную с Землей, получим скорость струи после отражения:

Так как то

Мы получили, что полная передача кинетической энергии струи турбине будет происходить при условии, когда линейная скорость движения лопаток турбины вдвое меньше скорости струи Первая паровая турбина, нашедшая практическое применение, была изготовлена шведским инженером Густавом Лавалем в 1889 г. Ее мощность была меньше при частоте вращения об/мин.

Рис. 36. Передача кинетической энергии струи пара лопатке турбины

Большая скорость истечения газа даже при средних перепадах давлений, составляющая примерно 1200 м/с, требует для эффективной работы турбины придания ее лопаткам линейной скорости около 600 м/с. Следовательно, для достижения высоких значений КПД турбина должна быть быстроходной. Нетрудно подсчитать силу инерции, действующую на лопатку турбины массой 1 кг, расположенную на ободе ротора радиусом 1 м, при скорости лопатки 600 м/с:

Возникает принципиальное противоречие: для экономичной работы турбины требуются сверхзвуковые скорости вращения ротора, но при таких скоростях турбина разрушится силами инерции. Для разрешения этого противоречия приходится конструировать турбины, вращающиеся со скоростью, меньшей оптимальной, но для полного использования кинетической энергии струи пара делать их многоступенчатыми, насаживая на общий вал несколько роторов возрастающего диаметра. Из-за недостаточно большой скорости вращения турбины пар отдает только часть своей кинетической энергии ротору меньшего диаметра. Затем отработавший в первой ступени пар направляется на второй ротор большего диаметра, отдавая его лопаткам часть оставшейся кинетической энергии и т. д. Отработавший пар конденсируется в охладителе-конденсаторе, а теплая вода направляется в котел.

Цикл паротурбинной установки в координатах показан на рисунке 37. В котле рабочее тело получает количество тепла нагревается и расширяется при постоянном давлении (изобара АВ). В турбине пар адиабатически расширяется (адиабата ВС), совершая работу по вращению ротора. В конденсаторе-охладителе, омываемом, например, речной водой, пар отдает воде количество тепла и конденсируется при постоянном давлении. Этому процессу соответствует изобара . Теплая вода из конденсатора насосом подается в котел. Этому процессу соответствует изохора Как видно, цикл паротурбинной установки замкнутый. Работа пара за один цикл численно равна площади фигуры ABCD.

Современные паровые турбины обладают высоким КПД преобразования кинетической

Рис. 37. Диаграмма рабочего цикла паротурбинной установки

энергии струи пара в механическую энергию, несколько превышающим 90%. Поэтому электрические генераторы практически всех тепловых и атомных электростанций мира, дающие более 80% всей вырабатываемой электроэнергии, приводятся в действие паровыми турбинами.

Так как температура пара, применяемого в современных паротурбинных установках, не превышает 580 С (температура нагревателя ), а температура пара на выходе из турбины обычно не ниже 30 °С (температура холодильника ), максимальное значение КПД паротурбинной установки как тепловой машины равно:

а реальные значения КПД паротурбинных конденсационных электростанций достигают лишь около 40%.

Мощность современных энергоблоков котел - турбина - генератор достигает кВт. На очереди в 10-й пятилетке сооружение энергоблоков мощностью до кВт.

Паротурбинные двигатели нашли широкое применение на водном транспорте. Однако их применению на сухопутном транспорте и тем более в авиации препятствует необходимость иметь топку и котел для полу ения пара, а также большое количество воды для использования в качестве рабочего тела.

Газовые турбины. Мысль об устранении топки и котла в тепловой машине с турбиной путем перенесения места сжигания топлива в само рабочее тело давно занимала конструкторов. Но разработка таких турбин внутреннего сгорания, в которых рабочим телом является не пар, а расширяющийся от нагревания воздух, сдерживалась отсутствием материалов, способных работать длительное время при высоких температурах и больших механических нагрузках.

Газотурбинная установка состоит из воздушного компрессора 1, камер сгорания 2 и газовой турбины 3 (рис. 38). Компрессор состоит из ротора, укрепленного на одной оси с турбиной, и неподвижного направляющего аппарата.

При работе турбины ротор компрессора вращается. Лопатки ротора имеют такую форму, что при их вращении давление перед компрессором понижается, а за ним повышается. Воздух засасывается в компрессор, и давление его за первым рядом лопаток ротора повышается. За первым рядом лопаток ротора расположен ряд лопаток неподвижного направляющего аппарата компрессора, с помощью которого изменяется направление движения воздуха и обеспечивается возможность его дальнейшего сжатия с помощью лопаток второй ступени ротора и т. д. Несколько ступеней лопаток компрессора обеспечивают позышенне давления воздуха в 5-7 раз.

Процесс сжатия протекает адиабатически, поэтому температура воздуха значительно повышается, достигая 200 °С и более.

Рис. 38. Устройство газотурбинной установки

Сжатый воздух поступает в камеру сгорания (рис. 39). Одновременно через форсунку в нее впрыскивается под большим давлением жидкое топливо - керосин, мазут.

При горении топлива воздух, служащий рабочим телом, получает некоторое количество тепла и нагревается до температуры 1500-2200 °С. Нагревание воздуха происходит при постоянном давлении, поэтому воздух расширяется и скорость его движения увеличивается.

Движущиеся с большой скоростью воздух и продукты горения направляются в турбину. Переходя от ступени к ступени, они отдают свою кинетическую энергию лопаткам турбины. Часть полученной турбиной энергии расходуется на вращение компрессора, а остальная используется, например, для вращения винта самолета или ротора электрического генератора.

Для предохранения лопаток турбины от разрушающего действия раскаленной и высокоскоростной газовой струи в камеру сгорания

Рис. 39. Камера сгорания

нагнетается с помощью компрессора значительно больше воздуха, чем необходимо для полного сжигания топлива. Воздух, входящий в камеру сгорания за зоной горения топлива (рис. 38), снижает температуру газовой струи, направляемой на лопатки турбины. Понижение температуры газа в турбине ведет к снижению КПД, поэтому ученые и конструкторы ведут поиски путей повышения верхнего предела рабочей температуры в газовой турбине. В некоторых современных авиационных газотурбинных двигателях температура газа перед турбиной достигает 1330 °С.

Отработавший воздух вместе с продуктами сгорания при давлении, близком к атмосферному, и температуре более 500 °С со скоростью более 500 м/с обычно выбрасывается в атмосферу либо для повышения КПД направляется в теплообменник, где отдает часть тепла на нагревание воздуха, поступающего в камеру сгорания.

Цикл работы газотурбинной установки на диаграмме представлен на рисунке 40. Процессу сжатия воздуха в компрессоре соответствует адиабата АВ, процессу нагревания и расширения в камере сгорания - изобара ВС. Адиабатический процесс расширения горячего газа в турбине представлен участком CD, процесс охлаждения и уменьшения объема рабочего тела представлен изобарой DA.

КПД газотурбинных установок достигает значений 25-30%. У газотурбинных двигателей нет громоздких паровых котлов, как у паровых машин и паровых турбин, нет поршней и механизмов, преобразующих возвратно-поступательное движение во вращательное, как у паровых машин и двигателей внутреннего сгорания. Поэтому газотурбинный двигатель занимает втрое меньше места, чем дизель той же мощности, а его удельная масса (отношение массы к мощности) в 6 - 9 раз меньше, чем у авиационного поршневого двигателя внутреннего сгорания. Компактность и быстроходность в сочетании с большой мощностью на единицу массы определили первую практически важную область применения газотурбинных двигателей - авиацию.

Самолеты с винтом, насаженным на вал газотурбинного двигателя, появились в 1944 г. Турбовинтовые двигатели имеют такие известные самолеты, как АН-24, ТУ-114, ИЛ-18, АН-22 - «Антей».

Максимальная масса «Антея» на взлете 250 т, грузоподъемность 80 т, или 720 пассажиров,

Рис. 40. Диаграмма рабочего цикла газотурбинной установки

скорость 740 км/ч, мощность каждого из четырех двигателей кВт.

Газотурбинные двигатели начинают вытеснять паротурбинные на водном транспорте, особенно на кораблях военно-морского флота. Переход от дизельных двигателей на газотурбинные позволил увеличить грузоподъемность судов на подводных крыльях в четыре раза, с 50 до 200 т.

Газотурбинные двигатели мощностью 220-440 кВт устанавливаются на большегрузных автомобилях. Проходит испытание в горнодобывающей промышленности 120-тонный БелАЗ-549В с газотурбинным двигателем.

Газовая турбина - это двигатель, в котором в процессе непрерывной работы основной орган устройства (ротор) превращает (в других случаях пара или воды) в работу механического плана. При этом струя рабочего вещества воздействует на закрепленные по окружности ротора лопатки, приводя их в движение. По направлению газового потока турбины делятся на осевые (газ перемещается параллельно оси турбины) или радиальные (перпендикулярное движение относительно той же оси). Существуют как одно- , так и многоступенчатые механизмы.

Газовая турбина может действовать на лопатки двумя способами. Во-первых, это активный процесс, когда газ подается в рабочую зону на высоких скоростях. При этом газовый поток стремится перемещаться прямолинейно, а стоящая на его пути изогнутая лопаточная деталь отклоняет его, поворачиваясь сама. Во-вторых, это процесс реактивного типа, когда скорость подачи газа невелика, однако при этом используются высокие давления. типа в чистом виде почти не встречается, т. к. в их турбинах присутствует которая действует на лопатки вместе с силой реакции.

Где сегодня применяется газовая турбина? Принцип работы устройства позволяет использовать его для приводов генераторов электротока, компрессоров и др. Широкое распространение турбины такого вида получили на транспорте (судовые газотурбинные установки). По сравнению с паровыми аналогами они имеют сравнительно небольшой вес и габариты, для них не нужно обустройство котельной, конденсационной установки.

Газовая турбина достаточно быстро готова к работе после запуска, развивает полную мощность приблизительно за 10 минут, проста в обслуживании, требует небольшого количества воды для охлаждения. В отличие от двигателей внутреннего сгорания, она не имеет инерционных воздействий от кривошипно-шатунного механизма. в полтора раза короче, чем дизельные двигатели и более чем в два раза легче. У устройств есть возможность работать на топливе низкого качества. Вышеуказанные качества позволяют считать двигатели такого плана представляющими особый интерес для судов на и на подводных крыльях.

Газовая турбина как основной компонент двигателя имеет и ряд существенных недостатков. В их числе отмечают высокую шумность, меньшую, чем у дизелей, экономичность, небольшой срок работы при высоких температурах (если используемая газовая среда имеет температуру около 1100 о С, то сроки использования турбины могут составлять в среднем до 750 часов).

КПД газовой турбины зависит от того, в какой системе она используется. Например, устройства, применяемые в энергетике с начальной температурой газов выше 1300 градусов Цельсия, со воздуха в компрессоре не более 23 и не менее 17 имеют при автономных операциях коэффициент около 38,5%. Такие турбины не очень широко распространены и применяются в основном для перекрытия нагрузочных пиков в электросистемах. Сегодня около 15 газовых турбин с мощностью до 30 МВт работают на ряде теплоэлектростанций России. На многоступенчатых установках достигается гораздо более высокий показатель полезного действия (около 0,93) за счет высокой эффективности конструктивных элементов.